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Formulas for the determination of the instability characteristics of unbounded 
parallel flow are obtained for the case of long waves, and applied, together with 
some general results, to give a qualitative description of the different modes of 
instability of such flows. It is found that there is a finite number of Werent 
modes unstable to long waves, essentially one for each relative maximum and 
minimum of the velocity profile. These modes appear to become stable when the 
wavelength is sufficiently small, reducing to neutral solutions associated with 
inflexion points as stability is approached. The formulas are also useful for 
quantitative calculation of instability characteristics. 

~ ~~~ ~ 

1. Introduction 
The stability of a parallel flow of a non-viscous incompressible fluid has been 

studied since last century, principally by examining the growth properties of an 
infinitesimal wave-like perturbation of a basic flow with given velocity 

u* = {w*(y*), 07 01. 
By a simple transformation (Squire 1933) the problem for three-dimensional 

waves can be reduced to an equivalent two-dimensional problem, and in fact the 
least stable disturbances are already two-dimensional. It is thus sufficient for 
many purposes to consider the two-dimensional case. The stability problem, 
of course, really involves the question of the growth properties of an arbitrary 
infinitesimal perturbation, but it has generally been assumed that such per- 
turbations can be resolved into independent components of wave-like character, 
i.e. having an exponential time factor (possiblywithcomplex exponent) e-iadanda 
pure imaginary eiax x-factor, multiplied by a function of y. Each such component 
is supposed to satisfy the linearized equations of motion and boundary con- 
ditions. 

Some care must be used in this approach because of the occurrence of ‘im- 
proper’ modes associated with concentrated layers of vorticity, and the corre- 
sponding continuous part of the c-spectrum, as well as the ordinary stable or 
unstable waves of the discrete c-spectrum. The existence of the continuous 
spectrum was known already to Rayleigh, but its importance, particularly in 
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connexion with the initial-value problem, has been emphasized recently by Case, 
in some interesting papers (Case 1960a, b, c ;  1961). In  this connexion one should 
also mention (i) the work of Orr (1907, pp. 26, 27) and Friedrichs (1942, p. 209) 
on a class of solutions for the plane Couette-flow stability problem which clearly 
shows the inadequacy of considering only the discrete modes, (ii) the perceptive 
discussion of Orr's work by Synge (1933, p. 15), (iii) the detailed study by Eliassen, 
Hoiland & Riis (1953) of the initial value problem for stability of plane Couette 
flow in a stratified fluid, and (iv) the solution by Carrier & Chang (1959) of the 
initial value problem in Rayleigh-Taylor instability, where a similar situation 
occurs. 

On the other hand, important as the continuous spectrum is for an understand- 
ing of the initial value problem, it still appears that those modes leading to actual 
instability are associated with the discrete spectrum, and it is in these that we are 
particularly interested here. Our main purposes are to give some formulas and 
techniques by which an interesting portion of the instability characteristics of 
an unbounded parallel flow can be readily determined, in the case of a more or 
less arbitrary velocity profile, and to discuss qualitatively the nature of the long 
wave instabilities of such flows. We shall be concerned only with discrete modes, 
and formulate the problem as Lord Rayleigh originally did in 1887 (cf. Rayleigh 
1945). 

Supposing the basic flow w*(y*) to be dimensionally characterised by some 
length scale L and velocity scale 8; choose dimensionless variables of time, 
position, and velocity in the usual way 

t = t* VIL, x = x*/L, u = u*/v 

@* = 9* (Y* 1 exp {ia* (z* - c* t* )I 

II. = 9(Y) exp {W. - ct,} ,  

and w = w*/V. Each wave component then has a stream function 

or, in dimensionless form, 

where c = c, + ici is a complex wave velocity and a a real positive wave-number. 
Thus c, is the phase velocity and exp (acit) the growth factor of the wave, and the 
basic flow is stable, neutrally stable, or unstable to this wave according as ci is 
negative, zero, or positive, respectively. 

The linearized equations of motion now lead to the Rayleigh stability equation, 

(w - c) ($# -a") - wl'$ = 0, (1 .1)  

where primes denote differentiations with respect to y. If the flow is bounded by 
parallel rigid walls at y = y1 and y2 the boundary conditions of vanishing normal 

(1 4 velocity give 

In the case of unbounded or semi-bounded flow the same boundary conditions 
are appropriate, with y1 and/or yz infinite. In  the case of a free surface of constant 
pressure it can be shown that the appropriate boundary condition is 

a9 = 0 (Y = Y1,YZ). 

$ I  = 0. (1.3) 
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This completes the statement of the eigenvalue problem whose solution deter- 
mines the function ci = ci(cc) and hence the stability characteristics of the flow. 
Most of the studies which have been made of this problem have been for special 
velocity profiles w(y); however, Tollmien (1935) has shown that in many ordinary 
circumstances if w(y) has an inflexion point at y = ys in the flow domain, then a 
neutrally stable eigensolution q5 = q5s, a = as 4 0, c = w(y,) = w,, exists. 
Various authors have computed solutions to this Sturm-Liouville problem by 
variational methods. Tollmien and later Lin (cf. Lin 1955) showed that unstable 
solutions existed near this one, and Lin obtained the formula 

where !@ denotes the principal value of the integral. This gives the form of the 
curve c = c(a) in the complex c plane near c = w,, once the neutral eigensolution 
is known. In  this paper we obtain (in the case of unbounded flow) expansions 
for small a of the eigenfunction and eigenvalue, for an essentially arbitrary velo- 
city profile. In  many cases the radius of convergence of these expansions seems 
to be large enough that by combining equation (1.4) for a near as with our results 
for a near 0 a considerable portion of the instability characteristics of the flow 
can be analytically determined. 
Our principal interest in this paper is in the case of unbounded flows, and to 

some extent semi-bounded flows. Previous work has been mainly on various 
specific representations of the velocity profiles of jets and half-jets. Carrier (cf. 
Esch 1957) has compared the stability characteristics of the half-jet profiles 

w = Y A Y L  (1.5a) 

(1.5b) 

and w = erfy. ( 1 . 5 ~ )  

As a -+ 0, ci + 5 1 for these profiles, and the last two have remarkably similar 
functions ci(a). Instability characteristics of simple representations of the full 
jet profile also resemble one another. 

The physical explanation of these similarities is that the detailed structure of 
the velocity profile is not important for small a, On the large scale of a long wave, 
the velocity profile looks essentially like a sharp discontinuity between its values 
at  00. To state this a little more precisely, we take a fixed w(y) and look a t  it in 
the dimensional form 

W*(Y*) = V W ( Y * P ) .  
We may choose the origin of velocity (by making a Galilei transformation if 
necessary) so that 

This may change c,, butnot ci. Furthermore,if w,(co) =I= 0, wechoose V = w*(co), 
i.e. w(w) = 1. We now hold a* fixed and let L -+ 0. We then get a velocity profile 
which in physical variables looks like the Helmholtz flow (1.5a), for which it is 
known that c = +i. We deduce that c-f + i  as a+O for any w(y) with 

w(co) + w( - co) = 0. 

17-2 
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w(co) = - w( - co) = 1, because c is a function of a = a&. (This assumes that 
the stability theory is physically reasonable so that this limit makes sense.) 
If w*(co) = 0 we are obliged to choose V differently, and in this case the limiting 
velocity profile is zero, a neutrally stable flow with c = 0. In  this case we thus 
expect that c +  0 as a + O ,  although the argument here seems a bit weaker 
because of the somewhat more obvious non-uniformity in the limiting process. 
At any rate, these considerations give a physical rationalization to the results of 
Carrier’s comparison, for small a. The more detailed study of the instability 
characteristics of unbounded flow for small a is taken up in the remainder of this 
paper. We note here, however, that in addition to the types of instability just 
described, in general there are also other modes, for which c behaves differently 
as a --f 0 (cf. $6).  

When a = 0 there is a ‘trivial’ eigensolution, q5 = A(w-c), of the Rayleigh 
equation. It is fairly well known (but apparently unpublished) that this solution 
is really a form of the basic flow. For the total x-component of the velocity of the 
perturbed flow is 

u = w(y) + away = w(y) + Aw‘(y), 
= w(y + A )  + O(AZ), 

and the y-component v = - a$/ax = 0. Thus the trivial solution is really the basic 
parallel flow displaced laterally by the small distance A .  In  fact, for any solution 
it is readily seen that the vertical displacement at (x, t )  of the material surface 

9 = F ( y )  exp (ia(x - ct)) with mean level y is 

where the amplitude P = q5/(w-c). In  terms of F the Rayleigh stability equa- 
tion ( 1.1) becomes 

The trivial solution is just P = constant, a = 0. 
Using a power series in a2, the first term of which was a linear combination of 

the trivial solution and the other solution (w - c)/(w - c)-~ dy of the Rayleigh 
equation for a = 0, Heisenberg (cf. Lin 1955) solved the Rayleigh equation for 
bounded flows. This method cannot be used for unbounded flows, for the series 
is not uniformly convergent a t  y = f 00 in this case. (However, Heisenberg did 
obtain approximate results for semi-bounded flows by using a large finite region 
with a modified boundary condition.) The reason is that q5 N eTay as y + +- 00 
in order to satisfy the Rayleigh equation and the boundary conditions for all 
non-zero a, however small. It is possible, however, to avoid this non-uniformity 
by ‘dividing out’ the asymptotic behaviour of # for large y, and then working 
with a power series in a as has been done by Lighthill (1957) and Miles (1957). 
This approach is similar to that used by Tatsumi & Kakutani (1  958) and Tatsumi 
& Gotoh (1960), in the case of the Orr-Sommerfeld equation. 

Another approach, using integral equations, somewhat related to that used 
by Howard (1959) for the viscous jet problem, is also available. This method, 
which leads directly to the eigenvalue relation without explicit consideration 
of the eigenfunctions, has some advantages and will be considered briefly in $ 4. 

We emphasize that in this paper we are entirely concerned with the inviscid 
theory of hydrodynamic stability, in which stability is indicated by real c, 
instability by complex c; the Rayleigh equation being invariant under complex 

[(w-c)2P‘]’ = aZ(w-c)ZP. (1.6) 
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conjugation except for a reversal of the sign of c,, any solution of it with c, < 0 
implies the existence of another solution (the complex conjugate) with c, > 0, 
and hence instability. The only kind of stability possible on the inviscid theory is 
neutral stability, with c, = 0. Since the Orr-Sommerfeld equation is not invariant 
in this way under complex conjugation, similar remarks do not apply in the 
viscous case, and the relation of the solutions of the Rayleigh equation to the 
limits as v + 0 of solutions of the Orr-Sommerfeld equation requires special con- 
sideration. For this we may refer to  Lin (1955, ch. 8), and references given there, 
where it is shown that a t  least for analytic w(y) a solution of the Rayleigh equation 
with c, > 0 is a limit of a solution of the Orr-Sommerfeld equation, though its 
complex conjugate may not be, throughout the entire flow domain. In  this paper 
we shall refer to ‘instability’ as ‘c,  > 0’ ,  but it should be remembered that on the 
inviscid theory c, < 0 equally implies instability. The rather subtle mathematical 
questions raised by the inclusion of viscosity, important as they are in some 
caaes, are not considered here, and our results must be taken with this in mind. 
Nevertheless, a full understanding of the inviscid theory is a desirable preliminary 
to any study of the viscous case. 

We conclude this introductory section with an outline of the rest of the paper: 
$2. Here, proceeding formally by the direct approach through the differential 

equation, we derive several formulas for the eigenfunctions and eigenvalue 
relation, in terms of the expansions in powers of a mentioned above. 

$ 3  gives a proof of convergence of the series for the eigenfunction. 
$4 presents the integral equation approach, which leads directly to a slightly 

different form of the eigenvalue relation. We also discuss briefly some conver- 
gence questions not considered in $3. . 

$ 5  is a list of examples of known exact solutions. We give these partly to pro- 
vide illustrations in which the results of our small a formulas can be checked, 
but especially because they provide some motivation for the discussion in $ 6  
of the general nature of the various unstable eigenmodes. We also feel that such 
a collection of exact solutions will be found generally convenient. 

$6 contains our main theoretical results. (Readers not interested in the detaiIs 
of the derivations of the formulas may omit $52-4, and skip at once to $5, or 
even $6.) We begin with some general results not restricted to long waves, and 
then show that for unbounded flow only certain types of instability can occur in 
the limit of small a. Finally, we apply our small-a formulas to show that these 
possible instabilities do occur, and describe them in more detail. 

$7 illustrates with two examples the use of the small-a formulas to give 
qnantitative numerical results. 

2. The eigenvalues and eigenfunctions for small wave-number 
It is convenient to define W = w - c, so that the Rayleigh equation becomes 

W(q5”- .2$) - wnq5 = 0. (2.1) 

We shall suppose that w approaches constant values as y -+ _+ 00. If the values 
m the same, we normalize so that they are zero, and refer to this case as the ‘jet 
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case'. If they are different we normalize so that they are _+ 1, and call this the 
' shear-layer case'. 

I n  both cases, we assume that W" -+ 0 at f co sufficiently rapidly that (at 
least for c .f: 0 )  equation (2.1) has two solutions asymptotic respectively to 
e 4 a y  as y +- +co and also two with these asymptotic properties as y + -a. 

A sufficient condition for this is the convergence of I Wn/  W I dy (Coddington 

& Levinson 1955, Ch. 3, Theorem 8.1); later we shall even explicitly wsume 
that w' 3 0 exponentially at & co. Our appoach is now as follows. For fixed 
c( $. 0) ,  we seek the solution of equation (2.1) with asymptotic behaviour e-"U 

(2.2a) 
8s y -+ +co in the form 

using for this purpose an expansion of x into a power series in a, 

JSO 

$1 = e-"yx(Y) (Y ' 01, 

W 

x = zaa"xn. 
0 

Similarly, we obtain the solution of equation (2.1) with asymptotic behaviour 
eay  as y -+ -co in the form 

$2 = e"Wy),  (2.2b) 

with 8 = ( - a)n8,. We then obtain theeigenvalue relation F(a, c )  = 0 byrequir- 

ing that g1 and q52 (properly normalized) should in fact be the same solution on 
( - co, co). This amounts to requiring that q51(0 + ) = Kq52(0 - ) and 

W 

0 

&(O + ) = K&(O - ) ( K  constant), 

since a solution of equation (2.1) is determined by such initial conditions. Actu- 
ally, by taking successively more terms in the expansions for x and 8 and using 
these conditions at 0 we shall obtain a sequence of approximations to the eigen- 
value relation. 

For the determination of x and 8, there remains of course an arbitrary constant 
factor. The most convenient normalization is 

(2.3) I x(c0) = W(co) = w,, 

X & Q )  = w w ,  x,(a) = 0, 
8,( -0) = Wpm, On( - 00) = 0 (12 2 1). 

8( - 00) = W( - co) E W-,,,, i.e. 

We shall for the most part not write down explicitly the formulas for 8;  they are 
essentially the same as for x except for certain obvious changes of sign which will 
be pointed out. 

Inserting (2.2a) into (2.1) we obtain for x the equation 

Wx"- W x  = 2aWx' (y > 0). (2.4) 

{W"(x,/w)'y = 0, 

{W"(X,+JW)'}' = 2wx; (12 2 0). 

The same equation with a replaced by - a holds for 8. On inserting the power 
series for x this gives 

(2.5) 
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The equations for the 8, are the same as these. With the normalization 
x(03) = W, we obtain for the successive determination of the xn 

XO(Y) = W(Y), I 

The analogues of (2.6) for the 0, have 03 replaced by - 03 in the limits of integra- 
tion. Explicit formulas for the first three x,, obtained from (2.6), are 

X O W  = W Y ) )  (2.7,) 

Again, for the 8,) we have - 03 instead of 03, W-, instead of W,. 
We now consider the eigenvalue relation for a general unbounded flow. 

Since our normalization does not force x(0) = S(O),  we can say only that if the 
eigenfunction is taken as exp ( - ay) x(y) for y > 0 then its continuation to y < 0 
must be a multiple of exp (my) B(y), i.e. we must have 

~ ( 0 )  = KB(0) and x'(O)-ax(O) = K[B'(O)+aB(O)] ,  

where K may be a function of a and c .  Eliminating K we obtain the condition 

e(o) y ( o )  - x(o) eyo) - 2ae(0) x(o) = 0,  (2.8) 

an equation which is of course not an identity in a for fixed c, but the eigenvalue 
relation between c and a. 

If the xn from (2.7,) and the corresponding 0, are now used in (2.8) we get for 
the eigenvalue relation, retaining terms up to order a3) 

2-  W",(Wz- W t m )  W-"y J:, - a[W% + w:,] - a2 

+ a3 I:, dy /Im (~~(y)-W~)(~~(y~)-W~2_~)(W-~(y)+W-~(y~))dy~+. .. = 0.J 

(2.9) 
In  the jet case this can be simplified to give 

Note that these formulas, although obtained by matching a t  y = 0, are inde- 
pendent of the choice of origin. (2.9) and (2.9 J) come from (2.8)) which expresses 
the vanishing at  y = 0 of the Wronskian of the two solutions Bexp (ay) and 
xexp (-ay) of the Rayleigh equation (2.1). Since the Wronskian of such an 
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equation is constant, and the construction of 8 and x was independent of the 
origin, (2.9) must also be independent of the origin. 

Examples of the use of (2.9) will be given in §§5 and 7. We note a t  this point, 
however, that the first approximation to  (2.9) is W: + W2_, = 0, i.e. taking the 
root corresponding to ci > 0, 

c = $(w(Go) + w( - m)}+ &(w(m) - w( - Go)]. 

Thus, in the shear-layer case, this first approximation gives c = i, as we have 
already anticipated, and such flows are always unstable to long waves. In  the 
jet case, w(co) = w( -a) = 0, and we must go to the next approximation. 

We have c = 0 to the first approximation, and then c2 = - kt /mm w2dy to the 

second approximation, if we use the first approximation for c in the integral. 
Thus in the jet case we have 

(2.10) 

Again, the flow is unstable to long waves, although ci --f 0 as a + 0. Prof. 
George Backus has pointed out to  us that (2.10) can be obtained, except for a 
numerical factor, by a simple physical argument which gives it an interesting 
interpretation. The idea is that a long wave instability of the jet is expected to be 
essentially a sinusoidal displacement (indeed the perturbation stream function 
which we have just computed is approximately w(y) for small a, which, as we 
observed above, corresponds to a lateral displacement), and instability arises 
because of the centifugal force associated with the curved path. If the stream- 
line displacement is ~ ( t )  cos m the curvature is - $7 cos ax, and the centrifugal 
force associated with a particular streamline is d q  cos m w2(y). Integrating over 

the jet we obtain a2q cos ax w2dy. This force is resisted by the inertia of the 

fluid which we may readily estimate by assuming that the perturbed motion 
extends essentially a distance of a wavelength into the exterior of the jet. Thus 

the order of magnitude of the force is a27 w2dy. a-1 per wavelength, and 

this accelerates a mass of order a-2 at the rate q"(t). Taking 7 proportional to 
exp (ac& this gives 

/Yw 

Lw 

or cs = O ( a S k  w2dy). This argument can in fact be refined to give the exact 

coefficient +-in accordance with equation (2.10). 

3. Convergence of the series for x 

tially the same. 
We sketch here a proof of the convergence of Cxnan. The proof for 8 is essen- 

For convenience we use the new independent variable 7 = e-v (0 < 7 < I), 
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with subscript 7 to denote differentiation with respect to 7. Equation (2.5) 
then gives 

(X,+l/W), = - 27-1w-2 Jov w(xn)ql 

l a  
= - 27-1 ( lov (xn/W)ql d71- 2 lo ( w2)vld7l /r(xn/ w)q2 d72) (fi a 1) 

(3.1) 
Wenow suppose that w is such that 1 ( W2),  I < Aya-l for some positive constants 

a- 1 and A. This is satisfied for most velocity profiles of interest. We also assume 
that the imaginarypart c, of c is not zero, and note that since w is real I W-2 I < c~ 2. 

These inequalities enable us to prove from (3.1) by mathematical induction (taking 
xo = W )  that 

< (A/acg) (2/a)n-1exp (A/2ac:) (n 2 1) 
for 0 < 7 < 1. From this it follows that 

Thus a sufficient condition for convergence of Zxn an is a < 4 a. 

4. Integral equation approach 
The above proof of the convergence of Z;Xnan unfortunately does not answer 

all questions connected with convergence; in particular it is not at once clear 
that the series (2.9) for the function of a and c whose vanishing gives the eigen- 
value relation, is convergent in the range in which we wish to use it. We have 
proved the convergence of &yna" for a fixed c with non-zero imaginary part. 
We then obtain from this a series, the left-hand side of (2.9) or the expansion of 
[ex' - XO' - 20lOx]~=~, say, which is again convergent in a for fixed c with imaginary 
part 0. It is clear from the proof that this convergence is even uniform for c 
in a compact set excluding ci = 0. Now we wish to set this series equal to zero 
to determine c as a function of a for small a. There will clearly be no difficulty 
here if c, for the eigenvalue does not approach zero as a -+ 0,  and this in fact 
occurs in the shear-layer case. But in the jet case we have (at least tentatively) 
equation (2.10) which indicates that ci + 0 as a -+ 0, and so casts doubt on the 
vdidity of the expansion. It is in fact possible to show that (2.9) does converge 
rapidyenough that our formulas are correct even when ci -+ 0, provided that c, + 0 
dowly enough as a -+ 0, and the behaviour given by (2.10) does actually satisfy 
this condition of 'slowness'. Rather than discuss this, however, we shall obtain 
IA similar result in the course of the presentation of the previously mentioned 
integral equation attack. For simplicity we restrict attention to the jet case, 
and look for the eigenvalue with the behaviour (2.10) as a -+ 0. It is possible, 
however, to use a modification of this approach in the shear-layer case also. Beside 
the fact that the difficulty with ci 4 0 is more readily handled with the integral 
equation method, this method also has the advantage of giving explicit formulas 
for all terms of an expansion of the eigenvalue relation. 



266 P. G. Drazin and L. N .  Howard 

If we set F = $/W, the Rayleigh equation (2.1) can be written as 

Now it is possible to  find explicitly the Green’s function for the differential 
operator on the left-hand side of this equation, with the boundary conditions 
1P( 

~ ( y ,  yl) = - (2ac2)-lexp [ - aczsgn (y - yl) s” w-~ciy~]. 
co) = 0. This is 

Yl 

With the aid of this Green’s function we now invert the operator to obtain the 

J - W  

with K(y,yl) = W-2(yl)[W4(yl)-~4]exp[ -ac2sgn(y-yl)[ Y1 W-zdy2]. (4.2) 

We now write down the Fredholm determinant for this integral equation 

The vanishing of D gives the eigenvalue relation. Because of the infinite interval, 
we cannot simply appeal to the ordinary theorem to show that this series for 
D converges. However, it  is possible to prove this directly in the present case, 
and we now sketch this proof. It proceeds on the assumptions that 

IWI < Aexp(-alyl) 
for some positive constants A and a, and that c is ‘almost pure imaginary’ 
in the sense that lcl/lc,l < N -= 00; thus we shall prove that the series for D 
converges if c is almost pure imaginary and then observe that the locus D = 0 
does lie in this domain of convergence, being given in fact by (2.10) to f i s t  ap- 
proximation, for small a. 

The first step is to find explicit expressions for the determinants which occur in 
the series (4.3). For 1 < i , j  < n we have 

det I ~ ( y , , y ~ ) l  = w - ~ ( Y ~ )  ( W 4 ( ~ 1 ) - c 4 ) . . . ~ z - 2 ( ~ n )  (W4(~,)-c4)det I~(Y~,Y,)L 
where 

for one factor W-2(W4-c4) can be removed from each column of the original 
determinant. By interchange of a pair of rows and the corresponding columns 
i t  is easily seen that k(yl, ... y,) = det Ik(y,, y,)] is symmetric in all n variables, 
since k(y ,  yl) is symmetric. Evidently det IK(y,, y,) I is also symmetric, so it is 
enough to consider its values for y1 < y2 < . . . < yn; the integral over all the space 
of y17 . . ., yn will be just n ! times the integral over this domain. But if y1 < y, 

k(y,y,) = exp[ -noaSgn(y-~l)S.W-2~y,], Yl 
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Using this in k(y,, ..., y,) for y1 < y2 < ... < y,, we are able to evaluate the 
determinant explicitly with the aid of elementary transformations. The result is 

... [ 1-exp ( -2ac2 W-Zdy)] (4.4) 

Notice that (4.4) gives us an explicit formula for the nth term in the expansion 

We now apply (4.4) to estimate k(y,, ..., y,). Writing c = cp+ici, we have 

(for y1 < y2 < ... < y,). 

of D. 

I c ~ W - ~ (  < I C ( ~ [ ( W - C ~ ) ~ + C ~ ] - ~  < Ic12/c:. Thus, by a very rough estimate, 

Ik(y1, *.*,Yn)I < (1 + ~ X P  [ ~ ~ I c ~ ~ c T ~ ( Y ~ - Y ~ ) I )  *.*(I + ~ X P  [ ~ ~ I c ~ ~ c ~ ~ ( Y ~ - Y Y ~ - ~ ) I )  
< 2n-lexp [2a]cI2ci2(y,- y,)] 

Dropping the condition y1 < y2 < ... < y,, we see from the symmetry that, in 
any case, 

and so 
Ik(y1, .-*Yn)I < 2n-1ex~(2alc]2~i2[I~l l  + l ~ 2 1 +  *.. + IYY~.II>, 

petp(Yi,yj)Il < 2n-11W-2(Yl)(W4(Y1)--4)1eXP(2~IC/2CT2(Y11) * . a  

- - *  (W-2(Yn)(W4(~Yn)-~4))ex~(2aJc12cT21Ynl). 
From this it is clear that (4.3) converges if 

and we can show that this is the case if c is almost pure imaginary, 

IWI < Aexp(-alyl), 
and a is small enough, as follows: 

under our assumptions. From this, convergence of the integral, and so of (4.3), 
follows for small enough a. 

The first two terms of (4.3) give us an approximation to the eigenvalue rela- 
tion m 

I+?/ W-2(W4-c4)dy = 0. 
2c2 --m 

Under our assumptions of almost pure imaginary c and I w I < A exp ( - a1 y I) 
it  is possible by standard techniques to estimate this integral a little more closely 
than we have done above, and so show that 

m 
W-2(W*--cQ)dy = / (w2-2cw)dy+0(~c~210g Icl). Km --a, 

(4.5) 

We thus obtain (2.10) more rigorously as the first approximation to c(a), and 
so verify that at least for one eigenfunction we do have c almost pure imaginary 
for small enough a. 
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Including thenext term in (4.3) we have 

With c2 = O(a), (4.4) shows that k(y,, . .., y,) = O(a2(n-l)) and so, if we include 
those terms in (4.3) which involve n-tuple or lesser integrals we shall have our 
eigenvalue relation with error of order 012,. In particular, then, up to but not 
including order a4 we have 

5. Examples 
We list first exact solutions for various broken-line velocity profiles which have 

been given by Kelvin, Helmholtz and Rayleigh (of. Rayleigh 1945) or are obtain- 
able by the same method, namely, by solving (1.1) separately in intervals of 
continuity of w' and matching pressure and normal velocity at the discontinuity 
surfaces. Approximate formulas for small a are also given. Sketches of these 
profiles are shown in figure 1. 

1. ' Trapezium ' profile : 

(5.1) I w(y) = 0,  IYI ' 1, 

= l--(]Yl-a)/(l-a), 1 > IYI>a, 
= 1, a ' IYI. 

Eigenvalue relation (Rayleigh 1945, p. 397): 

4(1 -a)2a2c2- ~ ( 1  -a)  ac{2(1 -a )  a T exp ( -  2aa) [1 -exp { - 2(1 - a )  a}]) 
+ {- 1 + 2(1 -a)  a+exp [ - 2(1 -a)  a]} 
T exp ( - 2aa) {I - I1 + 2( 1 - a)xl exp [ - 2(1- a)  all = 0, (5 .2)  
eign is for amisymmetric (sinuous) and the lower for symmetric -1aeL-e O I I ~  

(varicose) disturbances. 
For smaI1 a 
Antisymmetric : 

Symmetric: 

l a .  a = 1 ('Rectangle' profile; cf. Rayleigh 1945, pp. 380, 381) 
Antisymmetric : 

Symmetric: 

c = ia*[u++(1-a)1*+- .... (5.3) 

c = 1+i(aa)*+ .... (5.4) 
Special cases of particular interest are: 

c = [ 1 + i(c0th a)&]/[ 1 + coth a] = i d  + . . . . 

c = [l+i(tanhol)~]/[l+tanha] = 1+ia?i+ .... 
(5 .5)  

(5.6) 
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1 b. a = 0 ('Triangle' profile; cf. Rayleigh 1945, p. 395) 
Antisymmetric : 
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2a2c2 + a( 1 - 2a - e-2a) c + {a( 1 + e-2a) - 1 + e-za) = 0. (5.7) 
or c = .... 

Symmetric : 
c = 1 /2~(1 -e4a )  = 1-a+ .... 

2. 'Double-jet ' profile: 

I w(y) = 0, IYI > 1, 
= U ,  - l < y < O ,  
=1,  O < y < l .  

I 

(5.9) 

J-p- 
FIQURE 1. Broken line velocity profiles. 

Eigenvalue relation (2' = tanh a)  : 

(1 - c)2 [c2 + (1 - c)2 T ]  [c2T + ( U  - c)2] 

+ ( U -  c)2[c2T + (1 - c ) ~ ]  [c2 + (U - c ) ~  TI = 0. (5.10) 

For small a there are three (conjugate pairs of) roots : 

c = i[+(l+ U2)a]&+ ..., 
c = l+i(+a)++ ..., 
c = U[l+i(ga)++ ...I. 

(5.11) 
(5.12) 
(5.13) 

3. 'Separated double-jet ' profile : 

(5.14) 
w = 0, 1yI > 2 and Iy] < 1, 

=1,  - 2 < y < - 1  and l < y < 2 .  

Eigenvalue relations : 
Antisymmetric : 

( eC) [ 1 + ( ec) tanh E ]  + 1 + ( +c) coth a = 0. (5.15) 

Symmetric : (eC)' [ (&c)2 + coth a] + ( eC)' + tanh a = 0. (5.16) 
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For small a there are four (conjugate pairs of) roots 
Antisymmetric: 

c = i d +  ...) 

Symmetric : 
c =  l+ ia+  .... 

c = 1 +iaH+ ..., 
c = ia+ .... 

4. Shear-layer or ‘half-jet ’ profile: 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

Eigenvalue relation (Rayleigh 1945, p. 393): 

c2 = (4a2a2)-l[ ( 1 - 2aa)2 - e-4aa]. (5.22) 

Only two special cases are of interest, a = 1 and u = 0, the latter giving the Helm- 
holtz flow with eigenvalue relation c2 + 1 = 0. For small a : 

c = i ( l -$ua+  ...). 

5.  ‘Double shear-layer’ profile: 

= 0, IyI < 1. 
W(Y) = YllYl7 IYI 

Eigenvalue relation : 

(5.23) 

(5.24) 

[c4 + (1 - c2)2] tanh a + 2c2( 1 + c2) = 0. (5.25) 

For small a there are two (pairs of) roots: 

c = i(l+&a+ ...), 

c = i (+a)+( l+&a+ ...). 

(5.26) 

(5.27) 

Known results for other profiles are mainly restricted to the neutral solutions 
associated with inflexion points, and so are not really suitable for comparison 
with our formulas. However, our results for small a can be extended toward 
Lin’s perturbation (1.4) of these neutral solutions, so for completeness we give 
some of these. 

(5.28) w(y) = sech2 y. 6. Bickley jet 

Antisymmetric (Savic 1941): 

4, = aech2 y, w, = 3, a, = 2. (5.29) 

Symmetric (Savic & Murphy 1943): 

4, = sech y tanh y, w, = 8, a, = 1. (5.30) 

7. Antisymmetric double jets (Curle 1 9 5 6 ~ )  b )  

w(y) = sechmytanh y, (m 2 - 4)) (5.31) 

q5, = sechm+ly, w, = 0, a, = 2m+ 1. (5.32) 
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These are neutral solutions corresponding to the inflexion points at y = 0. 
Solutions corresponding to the other inflexion points are apparently not known. 
The special case m = 0,  a shear-layer profile, wtts also given by Garcia (1956).  

8. Erf half-jet w(y) = erf y. Carrier (cf. Esch 1957) has given some numerical 
results, including growth rates, for this case. 

9 .  Wake profiles. Hollingdale ( 1  940)  has given numerical solutions for some 
wake profiles, including w = exp +( 1 - y2), as well as for some shear-layer profiles. 

We illustrate the application of our formulas ( 2 . 9 )  and ( 2 . 9 5 )  with two of 
these examples. The first is of the jet type, the simple rectangular jet l a  above. 
(2 .9  J )  gives for the eigenvalue relation, 

2c2+a 2 ( 1 - 2 c ) - c 2  ____ -a2{2 (1 -2c ) }  [ 2((;-3 + . . . = 0,  \ 2 ( 1  (1 -c )2  - 2c)’) 

or 2c2+ ( 1  - 2c)2 ( 1  - c)-2 ( 2 a  - 4a2) + . . . = 0. 

c = a-a2+ ...+ ia*(l -a+ ...) 

c = l - a + a 2 + . . . + i a q l - a + . . . )  

Solving this for c, to the order of approximation indicated, we find 

for the sinuous disturbance, and 

for the varicose disturbance. These are readily seen to agree with the exact 
solutions (5 .5 )  and (5 .6 ) .  

Our second example is of the shear-layer type, the half-jet profile 4 above. 
We take a = 1 in equation (5 .21) .  The eigenvalue relation (2 .9)  then gives 

- 2 a ( l  + c 2 )  - a2( - 16/3)  +a3( - 16/3)  + ... = 0, 

c2 = - 1 + ( 8 / 3 )  a-  ( 8 / 3 )  a2+ .  . ., or 

in agreement with Rayleigh’s result (5.22).  
Our series are used for the determination of the instability characteristics of 

the smooth profiles w = tanh y and w = sech2 y in 0 7, and the results compared 
with previous numerical calculations. 

6. General discussion 
(a)  Btability characteristics 

We begin with an account of some stability characteristics for general values of 
wave-number. This and the following account of the characteristics for small 
wave-numbers obtained by using the formulas of the preceding sections will 
lead to a clear overall picture of the stability characteristics of unbounded flows. 

Howard (1961)  has shown that the locus of unstable eigenvalues (that is, 
the set of values ~ ( a )  with ci > 0 )  can be limited in a general way. He proved that, 
if ci > 0, c lies in the semi-circle in the complex plane defined by 

[c, - *(a + b)I2 + cf < [+(a - b)I2, (6 .1)  

where a is the maximum and b the minimum value of w(y) over the field of flow. 
This semi-circle theorem is valid for unbounded, semi-bounded and bounded flows. 
It implies Rayleigh’s theorem that c lies within the range of w. Howard’s equation 
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(3.1) (1961, p. 510) incidentally implies that for a homogeneous fluid c, also 
lies within the range of w when ci = 0. (However, for a stratified fluid under 
gravity, internal waves with c, outside the range of w are possible; these are 
isolated modes, not being the limit of unstable modes as ci -+ 0.) That the semi- 
circle theorem gives the best general estimate can be seen from our example 
l a  of $5 (the rectangular jet profile), for which the locus of unstable eigenvalues 
is exactly the semi-circle 

with the exception of the point c = Q( 1 + i),  which is approached as a + 00. 

We shall next prove that for many unbounded flows there is an upper bound on 
the values of a which can have eigenfunctions with ci > 0,  and we shall give an 
estimate of this upper bound which seems to be quite good. For the proof we 
make hypotheses that restrict w, but not very severely; examples of profiles 
which satisfy them are sufficiently smooth monotonic shear-layer profiles with 
just one point of inflexion and jet profiles with just two points of inflexion, both 
occurring at the same value of w. The hypotheses are that (a)  w is of class C2; 
( b )  there exists a real number c, such that w”(w-c,) < 0 everywhere; and ( c )  
Iw”/(w - c,) I is both integrable and square integrable on ( - m, a). 

We start with the Rayleigh stability equation in the form (2.1) and invert 
the operator (D2 - a2) to get 

(cr-Q)2+c; = t (Ci > 0 )  

(This can be done, for example, by variation of parameters.) With F = $/ W ,  this 
may be written 

(6.3) WF = -- /a exp ( - a ly  - y1 I) w”Fdyl. 
2a -a 

If we multiply this equation by w“F and integrate, we get 

where a bar denotes a complex conjugate. The right-hand side is obviously real, 

and the imaginary part of the left-hand side is -ci w”lPlzdy, which must s_mm 
thus be zero. On assuming that ci > 0, we deduce that the integral must vanish. 
Thus we can replace c in the previous equation by any number. We choose to 
replace it by c,, so that 

J -a 

Let us set f = [w”(w - c,)]* P and k = [ - w”/(w - c,)]*. Then, since 
W”(W-c,) < 0, 
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k is a non-negative real function, and the last equation can be written 

/Im = &J:-mdySm --m ~(~)k(y)exP(-~ly-y, l ) f (y , )k(y,)d~, .  (6-4) 

But this implies that 

Since J - I f 1 2  dy is clearly not zero if F 0, we get 
--m 

giving an upper bound on the possible wave-numbers of an unstable disturbance. 
(This result can also be shown to hold for bounded flow, under the same hypo- 
thesis W"(W - c,) < 0.) 

A different and sometimes better upper bound is obtained as follows. Equation 
(6.4) implies that 

on repeated use of Schwarz7s inequality. But 

Therefore 
WY) WYJ 6 w 4 ( ~ )  + ~ ~ ( Y J I .  

Thus, when c,. > 0 

Then, at least in the cases covered by our hypotheses (a), (b), (c), sufficiently 
short waves are always stable. We naturally expect that the curve c = c(a)  
reaches the real axis at the values of c and a which correspond to the well-known 
neutral solution associated with the inflexion point of the velocity profile. It is 
thus of interest to compare the above estimates of the maximum unstable wave- 
number with some known results of neutral solutions. The half-jet of our example 

18 Fluid Mech. I4 
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7 (w = tanhy) has a neutral solution at a = a, = 1. The estimate (6.5) for this 
case gives a < 2, while (6.6) gives a < (4/3)* .i- 1.10. The Bickley jet of example 6 
(w = sech2y) has two neutral solutions, with a, = 1 and 2 for the odd and even 
eigenfunctions, respectively. Estimate (6.5) gives a < 6 for this case, and (6.6) 
gives a < 2($)* = 2.29. In  a numerical comparison with Carrier's (cf. Esch 1957) 
computed results for the half-jet with w = erfy, estimate (6.6) gives a result 
essentially indistinguishable from the computed value of a, + 1-14. These ex- 
amples suggest that (6.6) gives a rather good estimate of the minimum wave- 
length of instability for ordinary unbounded flows. An estimate of a, from 
below can be obtained by the use of a trial function in the variational statement of 
the eigenvalue problem with c = c,, a = a,. For the sinuous mode of an unbounded 
jet flow a convenient trial function is q5 = w, which gives the estimate 

a," 2 C,"(J-Ym [-w"/(w-c,)]dy]{Jm -m w%y]-l. 

For the Bickley jet this estimate happens to be exact. 

(b) Characteristics for small wave-numbers 

After these remarks on the general behaviour of the graph of c = c(a) ,  we return 
to a discussion of the results of $$1-5 on the details of the behaviour as a -+ 0. 
Here we are interested in the case of ci > 0 for a > 0, although it is allowed that 
ci -+ 0 as a -+ 0. First, we may draw some plausible conjectures from the examples 
of broken-line profiles given in $5. It can be seen that for all the jet-type profiles 
c, + 0 as a -+ 0, while for the shear-layer type profiles sometimes ci -+ 1 as 
a -+ 0. Again, for the simplest types of jet, for instance, the trapezium profile 
(example I), there are two modes of instability for each sufficiently small value 
of a (the familiar sinuous and varicose disturbances of a symmetrical jet). For 
one of these modes (the sinuous) c, -+ 0 as a -+ 0,  while for the other c, -+ max w(y), 
( -  co < y < 00). On the other hand, the double-jet profile of example 2 has 
three modes of instability for small enough a, one of which has c -+ 0, while the 
other two have c approaching the values U and 1, which, one might guess, corre- 
spond to points at which w' = 0 in a similar smooth profile. In  the simple shear- 
layer case of example 4 there is just one unstable wave for small a, and this has 
c -+ i as a -+ 0. In  the double shear-layer of example 5, however, there are two 
unstable waves, one with c -+ i and another with c -+ 0, which is again apparently 
to be identified with a value of w at which w' = 0. We are thus led to anticipate 
that the set of values of c which are limits of unstable waves for a -+ 0 consists 
of those values of w at points where w' = 0 and in addition zero (though this 
might be thought the limiting value of w as y -+ _+ co, because w' -+ 0 as y -+ & co) 
in the jet case, and i in the shear-layer case. 

We now prove that in any case the set of limiting values of c as a -+ 0 cannot 
be larger than the set we have just conjectured. We start from the Rayleigh 
stability equation in the form (1.6), namely 

( W2F')' = a2W2F. 

If we let a --f 0 in this, we see that for the limiting F we must have W2F' = con- 
stant, and that this constant must in fact be zero to avoid divergence at  infinity. 
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Thus the limiting F must be constant also, in intervals in which W 2  $: 0, but it 
may have jumps at points at  which W vanishes. 

For the proof let us suppose fbt that the limiting P has no jumps and ap- 
proaches 1, say, everywhere (non-uniformly at infinity, of course). This must 
happen if the limiting value of c is not real. Now, by differentiating the above form 
of the Rayleigh equation, we get 

an inversion of the differential operator on the left gives 
(W?")" - a2( W2P') = aZ( WZ)' P; 

W2F' =-+a exp(-a[y-ylI)(W2)'Fdyl. S_m_ 
Differentiating this and using the Rayleigh equation, we get 

to 

W2F = a-2 ( W2F')' = 11 exp ( - a Iy - y1 I) sgn (y - yl) ( W2)' F dy,. 
2 --m 

Letting a -+ 0 in this, we have for the case P -+ 1 
a, 

W2(y) = sgn (y - y,) ( W2)' dy, = +[ W2(y) - W2_ - W: + W2(y)]. 
2 -02 

Therefore the limiting c must be such that W 2  + W:, = 0. In  the jet case this 
gives c -+ 0; in the shear-layer case c -+ i. Thus i is the only possible non-real limit 
of c as a -+ 0, and can occur in the shear-layer case only. 

Next suppose that the limiting F has a jump at the point y = yo. We have seen 
above that W must vanish there. We shall now show that w' must vanish there 
also. Differentiating the integral form (6.3) of the Rayleigh equation, we get 

co 
WP' + w'F = 1 f exp ( - aly - yll) sgn (y- y,) w"Fdy,  

2 - w  

Now let a -+ 0, taking y to have a value for which W + 0 in the limit (yo is one 
value of y at which W = 0,  but there may be others). We thus obtain for the 
limiting P m 

w'F = sgn (y - y,) w"Fdyl, 
2 --m 

this relation holding piece-wise between points at  which W = 0. The right-hand 
side is easily seen to be continuous over ( - 00, a), but the left-hand side has a 
jump at y = yo unless w'(y,,) = 0, which must accordingly be the case. 

(c)  The eigenfunctions 

The above proof showed that i was the only possible non-real limit of c as a -+ 0 ,  
and that it could occur for the shear-layer case only. To show that it does occur, 
recall that in 9 3 we proved convergence of our power series in a for &' and x if ci 
is bounded away from zero. As remarked in the f i s t  paragraph of $4, we then get 
from these series a convergent series for the left-hand side of equation (2.8). 
We may therefore use our series in the eigenvalue relation (2.8) if it yields an 
eigenvalue ~ ( a )  which we find ex post facto to be non-zero in the limit a 3 0,  and 
in the shear-layer case we did indeed find the eigenvalue with ci -+ 1 as a -+ 0. 
In  this case the limiting P has no jumps, since w - i  does not vanish. This is 
obvious also from the series for x and 0. Thus in the shear-layer case we see that 
c = c(a)  does have one branch at any rate which starts a t  c = i. 

18-2 
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In  $ 4  we showed that in the jet case there is a branch of c = c(a)  with c -+ 0 
as a -+ 0, the behaviour for small a being given by the asymptotic relation (2.10). 
The integral equation (4.1), together with some simple estimates on the kernel, 
shows that in this case also the limiting P has no jumps, and calculations can be 
made with either (2.9), (2.9 J), or the formulas of $4.  

Next we show by construction that there do exist eigenfunctions for which c 
approaches (as a -+ 0) the value of w at  a point yo where w‘ = 0, the limiting form 
of the function F now having a jump at this point. Let us suppose that w’(yo) = 0,  
wo = w(yo), and for the present also that wn(y0) =+ 0 and wo $: w(m) or w( -a). 
The simplest approach in this case seems to be to use our expansions to obtain 
representations of the solutions satisfying the boundary conditions a t  y = 5 00, 

but to use these expansions only sufficiently close to f m that (w - wo) does not 
vanish in the ranges of integration involved. Thus suppose that y = a is a point 
to the left, and y = b a point to the right, of all zeros of (w - wo) on the real line. 
We then construct the solution Xexp (-ay) using equations (2.7), but we shall 
use this representation only for y > b, where there is no difficulty with con- 
vergence of the integrals as c -+ wo. Similarly we construct Oeag for y < a. We 
now study the behaviour of the solutions of the Rayleigh stability equation 
between a and b as a -+ 0 and c + wo. For this purpose it is more convenient to 
work directly with Heisenberg’s (cf. Lin 1955) series in powers of a2 for P, since 
the formulas are simpler if we do not split off the exponential factors; it is per- 
missible to do this if we stay inside the fixed finite interval [a, b]. The expansions 
of $ 2 are thus used to handle the non-uniformities at infinity, but we make adirect 
study of the singularity which occurs if c + wo as a + 0. 

The first step is to construct the solution Fl of the Rayleigh equation (1.6), 

( WZF’)’ = a2WZF, (6.7) 

Fl(a) = 1, Fi(a) = 0. (6.8) 

which satisfies the boundary conditions at y = a, 

For Fl we readily find the Volterra integral equation 

(6.9) 

where M ( y )  = W-2dyl. (We are assuming, of course, that ci > 0.) Solving s: 
equation (6.9) by iteration in the usual way, we get 

Fl(Y) = 1 + a ~ p w - N ( Y 1 ) l  w2cly,+ ..a 

Next we construct the solution Fz which satisfies 

Fz(a) = 0,  Fi(a) = 1, 

(6.10) 

(6.11) 
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in a similar way. The result is 

where Wa = W(a).  (We shall use subscripts a and b to denote evaluation at these 
points.) These series (6.10), (6.12) are those of Heisenberg (cf. Lin 1955, p. 34). 

We now take the solution F = exp{a(y - a)}  S/ W ,  which satisfies the boundary 
conditions at y = - co, and continue it into (a, b)  by representing it as a linear 
combination of Pl and Pz. This gives 

For an eigenfunction, this must be proportional to the solution which satisfies 
the boundary conditions at y = + co, namely exp { - a(y - b ) } x / W .  Therefore 
the eigenvalue relation is 

= (S/ W > a 4  + IIa(e/W) + (o/W)’la4* 

{(@/W)aEt + [a(@/W) + ( e / w t ’ I a 4 } b  { - ~ x / W )  + (X/W% 
= {(e/W)api  + [a(e /w> + (0/W)’IaP& (x/W),* (6.13) 

We wish to show that this equation can be satisfied with a suitable c (a )  which 
approaches wo as a + 0. The behaviour of x and 0 for small a and (c - wo) is readily 
obtained from equations (2.9) and their analogues for 8. To study equation (6.13) 
we thus need to 6nd the behaviour of Fl, F2 and their derivatives at y = b. To do 
this, equations (6.10) and (6.12) show that the important thing to know is the 
behaviour of M(y) as c -+ wo. We proceed to investigate this. 

We define y z c- wo, and suppose that y -+ 0 ‘non-tangentially ’, i.e. inside 
an angle E < arg y < rr - E for some E > 0. We shall verify afterwards that the 
c(a) we obtain from the eigenvalue relation (6.13) has this property. Now (w - wo) 
may vanish at several points in [a, b] in addition to the point yo where w‘ = 0. 
We shall suppose first that w’ + 0 at each of these points, if any. I n  this case, as 
we shall verify in a moment, the essential behaviour of M ( y )  for small y is deter- 
mined only by the neighbourhood of yo; if there are two or more points at which 
w‘ and (w - wo) both vanish, additional complications arise which we shall indi- 
cate later. We first examine the behaviour of M ( y )  in the neighbourhood of a 
point y, at which w = w, = wo and wr + 0. To do this, consider 

say, with some 6 > 0 and small enough that w‘ + 0 throughout the interval 
[y, - 6, yn + 61. Now, by the mean value theorem, we have, for some number T,I 

between y, and y,  
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since (W-21 = O(Y-~) if y lies inside the angle c < arg y < r - e ,  as we have 
assumed. Therefore 

1 
-- log Iw-cI+O(l). 

1 
l’&) = - (w - c )  w’(yn) w’3(yn) 

(6.14) 

Thus Mn(y) becomes as large as O(y-l) in the neighbourhood of yn, but returns 
to O( 1)  at yn + 6. 

We next consider the behaviour of M(y) in the neighbourhood of y,, a point 
at which w‘ = 0. Using subscripts m to denote evaluation at y,, we suppose 
that w& = -2k2 < 0, for definiteness, and suppose that w”(y) < 0 on 
[y, - 6, y, + 61, where 6 > 0 is sufficiently small. Then 

Y 21 

Mrn(Y) sy,--d w-”y = Sy.-8 (W-wrn-y)-2dY* 

We define v(y) by the equation w - w, = - k2v2, with the choice of sign such that 
(y- y,) v(y) 2 0. It can then be readily shown that v, = 0, v& = 1, and that 
v’ > 0 on [y, - 6, y, + 61. If we set cr, = ykU2, taking & < arg CT < +T - &, we then 

l[v‘ = a, + ulv + a2v2 + u3v3+ 0(v4), 

and in a manner similar to that used in estimating M,(y) we h d  

+ &,log (v2+ cr2) + O(1). (6.15) 

Here ,8 = arg (v-ir)/(v+icr) is chosen so that it approaches zero as v + -a 
and approaches 271 as v + + co (note that icr lies in the second quadrant). The 
coefficients are 

a, = 1, u1 = wg/6k2, a2 = 5wg2/96k4+ w2[16k2, 
a3 = w&/60k2 + W; w%/24k4 + wg3/54k6 

as is easily determined from w - w, = - k2v2. 
Equations (6.14) and (6.15) show that the function M(y) for small y can be 

described, rather loosely as follows. At the points like yn, where (w - w,) vanishes 
but w‘ does not, i t  has large localized peaks, and at y, i t  has a large jump, essen- 
tially of magnitude 7rr/2cr3k4, which is of even larger order of magnitude than the 
peaks at points such as yn. 
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In  the eigenvalue relation (6.13) we need the values of Pl, F2 and their deri- 
vatives at  y = b. If we use just the leading terms of series (6.10) and (6.12) and 
their derivatives, we obtain for small y (and small a)  

(6.16) 

From equations (2.7) and the analogous equations for 8 we see that for small a, 

(x /W)b = 1 +O(a); (x /w) i -a(x /W)a  = - a W t W - 2  
+o(a2)’} (6.17) 

Putting relations (6.16) and (6.17) into the eigenvalue relation (6.13), and re- 
(o/w), = 1 + ~ ( a ) ;  (e/W):,+a(O/W), = aW2_mWi2+O(a2)- 

taining only the largest terms, we get 
(1 + a WK , m/2r3k4} { - CZW: W r 2 }  - {a W? , W r  ’}. 

Therefore na/2r3k4 N - (W: + W?,)/ WL W?,. (6.18) 

Thus if c -+ 0 as a -+ 0 in such a way that relation (6.18) holds, it  appears that we 
shall be able to satisfy the eigenvalue relation (6.13). Recalling that a2 = y/k2, 
we obtain as the first term in y(a), 

y = c-w, N e8.i (6.19) 

With y = O(a8) we can now return toequations (6.10) and (6.12) and check that 
the asymptotic relations (6.16) are really correct; this is not difficult to verify 
with the aid of expressions (6.14) for M,(y) and (6.15) for N,(y). We find 

Pl(b) = 1 +O(a) ,  
F2(b) = nW3i!1C4r3 + O( l), 

F;(b) = O(a2),  
Pl(b) = WiWb2 + O(a) ,  

which show that relation (6.18) is in fact correct to  order a. We have thus veri- 
fied ex post fact0 our assumption that E < arg y < m - E as a + 0. The logical basis 
of our proof is simply that we have produced a function and a relation c = ~ ( a )  
and have verified that they are an eigenfunction and eigenvalue relation as 
a -+ 0. We used the formally derived expansions (6.10), (6.12) for the eigenfunc- 
tion and the assumption about y only as a guide to produce the function and 
relation. 

In  writing the first term (6.19) for y we have, of course, taken W, to denote 
w(c0) - w,, but, since relation (6.18) is correct to order a and W, = w(o3) - wm+y 
differs from its limiting value by a term of order a%, we can in fact get the next 
term from it. I n  this way we get 

where W,, EE w, - w,, W-,, = w-, - w,. 
We must now fill in three gaps in our proof. First, we have assumed that 

wk < 0, so that the point y, is a local maximum. Clearly nothing need be changed 
much if wk > 0. In  this case we should define 1c by W; = 2k2, r by a2 = - y /k2  
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(with (r in the fourth quadrant), and v by w - w, = k2v2 (with (y - y,) v > 0 as 
before); the remaining steps are essentially the same as before, and we again 
find relation (6.20) except that the factors exp(@ri) are replaced by exp(@i), 
thus changing the sign of the real part. This is in accord with the semi-circle 
theorem (6.1), since if w, is the minimum of w, c, must increase to keep inside 
the semi-circle as a increases from zero. 

Secondly, we should examine the case wk = 0. Here the asymptotic behaviour 
of M, differs, but can be investigated similarly if we suppose, say, that 
wk = wk = ... = wk-l) = 0, wg) =+ 0. It is perhaps sufficient to state that the 
results are similar to those we have just given, for the case r = 2, except that 

c - w = O(~Wr-1)) 

instead of a3. This is consistent with the relation c - w, = O(a4) for the varicose 
mode of the broken-line jet of example 1, which case presumably corresponds to 
r - f c o .  

Thirdly, we have assumed that ym is the only point at  which w-w, and w’ 
both vanish. If there are two such points, it  is easy to carry through the argument 
as above; allowance being made for both of the jumps of P2. This leads to a mode 
with c-w, = O(a3). However, one might expect the occurrence of another 
mode, since there would be two if w had slightly different values at the two points 
a t  which w‘ vanishes. The separated double jet of example 3 is instructive in this 
connexion. There we find four unstable modes for small a: a sinuous mode with 
c -f 0,  as usual for jet-type flows; two varicose modes with c -+ 0 and c + 1, 
corresponding presumably to the minimum in the centre and the double maxi- 
mum at w = 1; and finally another sinuous mode with c -+ 1. Note, however, 
that the latter mode is qualitatively different from the other three in that it has 
c - w, = O(a)  rather than O(a4). Examination of the eigenfunctions shows that 
in the limit a + 0 F has equal ‘jumps ’ at the two maxima w = 1 for the varicose 
mode with c + 1 and ‘ jumps ’ of opposite sign but equal magnitude a t  these places 
for the sinuous mode with c + 1. (With broken-line profiles like this double jet 
the ‘jumps ’ in the limiting P are actually linear increases spread over the seg- 
ment on which w takes its maximum value.) The situation with smooth profiles 
having a double maximum or minimum is similar. In  addition to the mode with 
c = w, + O(a3), for which the limiting P has two jumps as indicated above, there 
is another mode with c = w,+O(a%). The limiting P for this mode is different 
from zero only between the two maxima, where it is constant. 

We have thus shown that for fairly general smooth unbounded profiles there 
is one mode of instability corresponding to each zero y, of w’. In  the limit as 
a + 0, c -+ w,, except for the mode corresponding to the zero of w‘ at infinity 
in a shear layer, when c -+ i. Then curves c = c(a) in the complex c-plane originate 
for a = 0 on the real axis and proceed into the upper half-plane, always staying 
inside the semi-circle (6-1), whose diameter is the range of w. As a increases, each 
curve presumably returns to the real axis (and we have proved this is some cases), 
the return occurring at a value of a satisfying both inequalities (6.5), (6.6). This 
gives the number of neutral oscillations for a > 0. If the zeros of wf are all simple, 
it  follows by Rolle’s theorem that each of the neutral oscillations is of the form 

m 
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found by Tollmien (1935) to exist, namely that with c = w(ys), a = as .t; 0, where 
ys is a zero of w”. 

This gives an outline of the stability characteristics of unbounded parallel 
flows. 

7. Two numerical examples 
In  this final section we give numerical results obtained by applying our general 

formulas to two specific stability problems, the tanh and sech2 profiles. Some 
numerical calculations for these or closely related profiles have been reported 
previously, so by comparison it is possible to get some idea of the range in which 
the power series will be useful for computation. 

w = tanh yprojile 

In  this case w(y) is odd and c is pure imaginary for small a. Using the first three 
terms of our formulas we find, after evaluating the integrals, that 

ci = 1 - 1.78501 + 1.526a2 + . . . . 
Lin’s perturbation (1.4) gives for a near 1 

ci = (2/77)(1-a2)+..*. 

Lessen & Fox (1955) have given some calculations for the ‘half-jet’ profile 
(cf. Lin 1953), which with proper renormalization is quite similar to the tanhy 
profile, although it is not exactly antisymmetrical and c is accordingly not 
exactly pure imaginary. Carrier (cf. Esch 1957) has computed the growth rate 
for the error function profile, which again is quite similar to the tanhy profile. 
In  figure 2 we show the growth rate aci as a function of a obtained from the 
calculations of Lessen & Fox and Carrier, by renormalizing in accordance with 
our conventions and so that in each case the neutral solution associated with the 
inflexion point occurs at wave-number a = 1. On the same graph are shown 
the slope given by Lin’s perturbation a t  a = 1 and the growth rates given by the 
power series when respectively two and three terms are retained. 

w = sech2 y projile 

For this case the three terms indicated explicitly in the eigenvalue relation 
(2.9) or (2.9 J) reduce to 

2 c 2 + a ( ~ - 4 c - c 2 J ) - a 2 ( $ - 4 c )  J +  ... = 0, 

( W 2  - c2) W-2dy.  For the sinuous mode, to be consistent with the 

terms dropped we need J only approximately and to the necessary order of 
approximation J = 1 + Qlog (24a-l) + &ri. Solving for c to this order of approxi- 

c = a + i{#a - a2 - &a2 log (24a-l) - &&ri]*. mation we find 

Lin’s perturbation for this case gives 
Sinuous mode : 

Varicose mode: 
ac/aa2 = 0.0423 - (0.0278) i (at a = 21, 

ac/aa2 = - 0.0264 - (0.0835) i (at a = 1). 
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FIGURE 2. Shear-layer growth rates. The respective curves are : CCL-Lin’s perturbation, 
tanh profile ; GFC-Carrier’s calculation for e r f  profile ; L & F-Lessen & Fox’s calculation 
for ‘half-jet’ profile; D & H, 11,111-2- and 3-term approximations from power series, tanh 
profile. 

CT 

FIGURE 3. The complex wave speed for the sech2 jet. CCL-Lin’s perturbation; L & F- 
Lessen & Fox’s calculation; D & H, I, 11, 111-1-, 2- and %term approximatioiis from 
power series. 
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Lessen & Fox (1955) have also given some computations for both the sinuous and 
varicose modes in this case. In  figure 3 we plot c, versus ci from their calculation 
and as obtained from our formula, with both the 2- and 3-term approximations. 
The slopes given by Lin’s perturbation and the behaviour of the varicose mode 
near a = 0, c = 1 given by the 1- and 2-term approximations of equations (6.19) 
and (6.20) are also indicated. 

This work was begun while the authors were participants in a summer program 
at the Woods Hole Oceanographic Institution (1959) supported by the National 
Science Foundation. Some subsequent work by Drazin has also been partially 
supported by the Office of Naval Research, under contract Nonr 1841 (18). 
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